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Recently, Cooper and Mickens [1] have studied the dynamics of a system modeled by the
equation of motion [2]:

€x þ x1=ð2nþ1Þ ¼ 0; (1)

xð0Þ ¼ x0; _xð0Þ ¼ 0; (2)

where n is a positive integer and over dots denote differentiation with respect to time, t: A higher-
order harmonic balance method, combined with a numerical solution for one particular value of
the initial conditions, has been used to construct an analytical approximation to a system modeled
by a x4=3 potential (i.e., n ¼ 1; in Eq. (1)). A functional form of the generalized harmonic balance
[3] used, to construct the analytical approximation to Eq. (1) for n ¼ 1; is

xðtÞ �
A cosðotÞ

1þ B cosð2otÞ
: (3)

Here A; B and the angular frequency ðoÞ are to be determined as functions of the initial conditions
expressed in Eq. (2). They have indicated the possibility of generalizing the suggested procedure to
any positive integer n: However, the numerically obtained frequency value for the case, n ¼ 1; is
found to be less compared to its exact value. In fact, there is no necessity to obtain numerical
solution of Eq. (1) for the determination of A and B in the above analytical approximation (3).
The unknown A and B values in Eq. (3) can be obtained directly from the energy relation of
Eq. (1) and the initial conditions (2).
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Motivated by work of Cooper and Mickens [1], this article presents an exact frequency
expression for the equation of motion (1), and the constants A and B in Eq. (3) applicable to any
positive integer n:
Multiplying Eq. (1) by 2 _x and using the initial conditions (2), the energy relation after

integration can be obtained as:

_xð Þ
2
¼ Iðx0Þ � IðxÞ (4)

where IðxÞ ¼ ð1=pÞx2p and p ¼ ðn þ 1Þ=ð2n þ 1Þ:
The restoring force function in the equation of motion (1) is an odd function. The behavior of

oscillations is the same for both negative and positive amplitudes. From Eqs. (2) and (4), one
obtains

Zx¼x0

x¼0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ � IðxÞ

p ¼

Zt¼T=4

t¼0

dt ¼
T

4
¼

p
2o

(5)

which implies that

ox
q
0 ¼ p

ffiffiffi
p

p
�

b
1

2p
;
1

2

� �
: (6)

Here, q ¼ n=ð2n þ 1Þ; T is the period and bða; bÞ ¼
R1
0

xa�1
ð1� xÞb�1 dx; is a beta function, whose

value can be found accurately using MATLAB. For the case, x0 ¼ 1 and n ¼ 1; the value of
angular frequency from Eq. (6) is found to be 1.0705, whereas the numerically integrated value
reported by Cooper and Mickens [1] is 1.054.
Regarding the analytical approximation to Eq. (1), Eq. (3) satisfies one of the initial conditions

(i.e., _xð0Þ ¼ 0) in Eq. (2). To satisfy the other initial condition (i.e., xð0Þ ¼ x0), one has to express

A ¼ ð1þ BÞx0: (7)

At the quarter period (i.e., t ¼ T=4 ¼ p=ð2oÞ):

x
p
2o

� 	
¼ 0; _x

p
2o

� 	
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
: (8)

The second condition in Eq. (8) is obtained from the energy relation (4). Using the conditions in
Eq. (7) and (8) in Eq. (3), one obtains

B ¼
1� b

1þ b
; (9)

where b ¼
ffiffiffi
p

p
ox

q
0 ¼ pp



b 1=ð2pÞ; 1=2
� �

: It is interesting to note that the constant B of Eq. (3) is
found to be independent of x0 and it is only a function of the positive integer n: Fig. 1 shows the
phase-plane diagram of the equation of motion (1) for x0 ¼ 1 and n ¼ 1: The constants in Eq. (3)
obtained are: A ¼ 1:0672; B ¼ 0:0672 and o ¼ 1:0705: The phase-plane diagram from the
analytical function (3) with the above parameters matches well with the actual one generated
using Eq. (4). The values of ox

q
0 for n ¼ 10; 100, 1000, obtained are: 1.1047, 1.1101, and 1.1107,

respectively. The corresponding values of B in Eq. (3) are: 0.1114, 0.1193, and 0.1201, respectively.
The present exact solution will be useful to validate the approximate periodic solutions for the
equation of motion (1).
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Fig. 1. Phase-plane diagram of the equation of motion (1) for the case, n ¼ 1:
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